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Long-memory analysis of time series with missing values
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The estimation of long memory is often restricted by missing data. We examine the effects on the estimation
of long memory of three simple gap-filling techniques: interpolation, random, and mean filling. Numerical
simulations show that the gap-filling techniques introduce significant deviations from the expected scaling
behavior for both persistent and antipersistent time series. For persistent time series the interpolation method
provides a reliable estimation of long memory for scales longer than the largest likely gap.
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I. INTRODUCTION

The presence of long memory~the terms long-range de
pendence, long-range persistence, and long-range antipe
tence are also used! has been identified in diverse fields ran
ing from geophysics and atmospheric phenomena@1,2#, to
biological systems@3–5#, and financial volatility@6#. Long
memory is a term used to describe a time series where
relations obey the power-law scaling relationship

r~t!'crutu2a. ~1!

Here r(t) is the autocorrelation function at lagt, cr is a
positive constant, anda is the long-memory paramete
where 0,a,1. The decay of correlations witht is hyper-
bolic, leading to divergence of the sum,

(
t52`

`

r~t!5`. ~2!

This is in contrast to random processes where no correlat
exist and to short-memory processes~e.g., ARMA and Mar-
kov models! where correlations decay exponentially witht.
Beran@7# defines a stationary process with long memory a
process for which

lim
t→`

r~t!/@crutu2a#51. ~3!

Equation~3! is an asymptotic definition requiring a long ho
mogeneous dataset for accurate estimation of the lo
memory parametera. Equations~1!–~3! apply to persistent
time series. For antipersistent time series the square of
autocorrelation function,r(t)2, must be used such thata is
replaced bya12.

A variety of techniques are available to estimate lo
memory in time series~see Beran@7#, Malamud and Turcotte
@8#, and Taqqu and Teverovsky@9# for reviews!. The appli-
cation of all methods to ‘‘real world’’ data suffer from th
competing factors of data length and homogeneity. The
striction of long-memory analysis to only homogeneous s
tions of time series@10# is a severe limitation particularly in
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nonrepeatable experiments typical in geophysics and rel
fields. It is the aim of this paper to examine the effect
several standard techniques for replacing missing data on
estimation of long memory, with the aim of establishing t
applicability of the techniques to incomplete datasets.

Several previous studies have examined the effects
missing data on long-memory estimation@11,12#. These
have, however, focused on estimation in state space using
Kalman filter to account for the missing data. Researcher
the physical sciences consistently prefer a more direct, h
ristic approach to estimation of long memory.

II. METHODOLOGY

Analysis techniques to identify long memory in a tim
series can be categorized according to the underlying the
random walk or spectral, and also by the detrending or n
detrending properties. Accurate estimation of long mem
with nondetrending methods requires the preprocessing
data to remove trends. We will use the Hurst exponentH to
define long memory, whereH.0.5 indicates long-range per
sistent data,H50.5 implies the absence of long memory, a
H,0.5 indicates long-range antipersistent data. As such
,H,1 defines the limits of our study.

We examine two popular techniques, detrended fluct
tion analysis~DFA! developed by Penget al. @3# ~a random
walk detrending method!, and the modified periodogram
technique@13# ~a spectral nondetrending method!. These are
representative of the range of techniques, and reflects
recommended approach to long-memory analysis@14#,
where multiple methods are integrated to avoid poten
misdiagnosis.

First-order DFA gives the fluctuation functionF(t), the
square root of the variance of the linearly detrended pro
of the time series averaged over segments of sizet, such that
F(t)}tH @3#. Higher-order DFA with polynominal detrend
ing @15# is not widely used and will not be examined her
The exponentH is estimated directly from a linear fit o
F(t) versust on a logarithmic plot and is related toa @Eq.
~1!# by H512a/2. Modifications to the DFA method
which correct for deviations from scaling at small time sca
intrinsic to the standard DFA method, have been develo
@4,15#. This study will use the modified DFA method deve
oped by Kantelhardtet al. @15#.

The standard periodogram method estimates the spe
©2003 The American Physical Society03-1
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densityS( f ) of the times series. The spectral density is si
ply the Fourier transform of the autocorrelation functi
r(t) @Eq. ~1!#. ThusS( f ) is related tof by S( f )' f 2b, where
b512a. The modified technique accounts for the predom
nance of high-frequency points on a logarithmic plot by a
eraging over logarithmically equispaced bins. The expon
b is related toH by H5(b11)/2.

The analysis techniques are applied to 30 independen
alizations of fractal Gaussian noises~FGNs!, synthetic time
series lying between classic white noise and brownian m
tion @16,17#. FGNs are generated with specificH exponents
from a Gaussian distribution with zero mean and unit va
ance via the method of Davies and Harte@18#. A specific
percentagePg of the time series is simulated as missing
selecting the appropriate percentage of randomly distribu
data points to remove, resulting in a geometric distribution
gap lengths@19#. Missing data are replaced via appropria
gap-filling techniques. This study is restricted to between
and 20% missing data, representing the realistic range
missing data observed in real world time series~e.g., UK
Meteorological Office European synoptic station precipi
tion records available at www.badc.rl.ac.uk!.

The gap-filling techniques applied are linear interpolatio
random, and mean fills as described below.

Interpolation fill. Data are replaced by linearly interpola
ing across the data gaps.

Random fill. Data are replaced with random data draw
from the empirical distribution of the time series, in th
case, a Gaussian distribution with unit mean and varianc

Mean fill. Data are replaced using the mean of the emp
cal distribution of the time series, in this case zero.

For examples of the application of these techniques,
Refs. @20,21#. For a discussion on more sophisticated ga
filling techniques, see the work of Little and Ruben@22#.

III. RESULTS

The results are presented as the ensemble average,
malized to the mean, of the 30 independent realizations
all cases the results of the modified periodogram method~not
shown! are equivalent to the DFA results shown. This h
been analytically justified by Heneghan and McDarby@23#
who examined the relationship between DFA and the po
spectral density, showing that DFA and spectral measu
provide equivalent characterizations of long-memory prop
ties for stationary signals.

Results for the specific caseH50.5, the absence of lon
memory~not shown!, show no deviation for the random o
mean fill techniques. The interpolation technique adds s
range correlations limited to short lags oft&30 for 10%
missing data. Gap filling cannot lead to the spurious diag
sis of long memory if it is absent from the time series.

A. Long-ranged persistentHÌ0.5

Figure 1 shows results of DFA forH50.7, representative
of the effects of gap filling over the range 0.5.H.1. The
results clearly indicate deviation from the expected sca
01710
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behavior with no data gaps at short lags~high frequency!.
The random fill and mean fill methods show a curvatu
towards the absence of long memory while the interpolat
method shows a curvature towards highly correlated beh
ior. The variance for each gap-filling technique and perce
age of missing data is comparable at equivalent lags.
standard deviation is less than 3% of the ensemble mean
short lags and less than 17% at long lags. Figure 2 shows

FIG. 2. Variation in the minimum lagtm for which the ensemble
mean ofF(t), of 30 FGN realizations withPg% gaps and interpo-
lation filling, deviates from the expected scaling with no data ga
by less than 1 standard deviation.

FIG. 1. Ensemble averages, normalized to the mean, of 30
dependent FGN simulations with 8192 data points andH50.7. Top
panel: interpolation of missing data; middle panel: random fill
missing data; and bottom panel: mean fill of missing data. So
lines—0% missing data, dotted lines—10% missing data,
dashed lines—20% missing data.61 standard deviation error bar
for the shortest and longest lags are included.
3-2



l-

be
th

o
g

si
us
si
n
i

ns
a
n

ri-
f
e
ts
ted

-
the
nd
en
a

tan-

to
ap-

nce
in

on
in-
ot

po-
its
ola-
ut
axi-
ec-
et-
of
he
ue

is
the
in-

ilar

of
f

re-

ap
ion
e
ng

ing
u-
rt-
he
pa-
of

ate

i

o
es
20
an

BRIEF REPORTS PHYSICAL REVIEW E68, 017103 ~2003!
minimum lag for which there is no deviation from true sca
ing with the interpolation fill.

B. Long-ranged antipersistentHË0.5

The results for the long-range antipersistent caseH
,0.5, Fig. 3, show deviation from the expected scaling
havior with no data gaps at all lags. The magnitude of
deviation is greater at long lags~low frequency! than at short
lags~high frequency!. The deviations towards the absence
long memory are significantly greater than those for lon
ranged persistent time series, consistent with the conclu
of Chenet al. @24# that antipersistent signals are less rob
to the effects of nonstationarities compared to persistent
nals. The potential for underestimating the strength of lo
memory for antipersistent time series with missing data
significantly greater than for persistent time series.

IV. DISCUSSION

The results are consistent with intuitive expectatio
Random and mean fills destroy correlations between d
points such that the deviations from the true scaling te
asymptotically toH50.5. Chenet al. @24#, in studying the

FIG. 3. Ensemble averages, normalized to the mean, of 30
dependent FGN simulations with 8192 data points andH50.3. Top
panel: interpolation of missing data; middle panel: random fill
missing data; bottom panel: mean fill of missing data. Solid lin
0% missing data; dotted lines: 10% missing data; dashed lines:
missing data.61 standard deviation errors bars for the shortest
longest lags are included.
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general application of DFA to time series with nonstationa
ties, showed that the DFA signalF(t) comprises the sum o
the squares ofF(t) of the individual components of the tim
series, with the condition that the individual componen
were uncorrelated. It was argued that the randomly loca
jumps between zero~mean fill method! and nonzero seg
ments of a time series introduces a random component to
analysis. The results of the DFA analysis for random a
mean fill techniques are completely consistent with Ch
et al. where the gap-filling technique is simply considered
form of nonstationarity. Chenet al.were, however, unable to
accurately distinguish the short lag features, using the s
dard DFA method.

Considering the autocorrelation function, it is possible
present an argument for the effect of random or mean g
filling techniques on the autocorrelation functionr(t) such
that r(t) is modified by a multiplicative factor ofPg

2 for t
>1 @25#. The resulting modification of the stepr(0) to r(1)
can be considered a simple form of short-range depende
with H50.5. Qualitatively this can be considered to act
competition with the true long memory.

No similar simple statement regarding the fluctuati
function or autocorrelation function can be made for the
terpolation gap-filling technique where the gap-filling is n
independent of the actual data. Huet al. @26# analytically
demonstrated that DFA on a linear trend gives a Hurst ex
nent of 2.H52.0 should thus represent the asymptotic lim
of the observed deviations. For correlated data the interp
tion fill shows deviations towards this asymptotic limit b
only at scales shorter than or similar to the expected m
mum gap length: 6 and 4 for 20% and 10% gaps, resp
tively ~calculated from the expected maximum of a geom
ric distribution with known series length using the theory
large numbers@27#!. At longer scales the dependence of t
interpolation fill on the actual time series maintains the tr
long memory properties. For antipersistent signals there
evidence that at short lags the deviation is tending to
expected asymptotic limit; however, at larger scales the
terpolation destroys the correlation structure in a sim
manner to the random or mean fills.

The significant feature of the results for the estimation
long memory in ‘‘real world’’ data is the scale of influence o
the gap filling techniques. For persistent data the low f
quency components of the time seriest*100, which are
principally manifest as local trends, are robust to the g
filling techniques. For antipersistent data the mean revers
property intrinsic to the time series inhibits drift from th
mean resulting in sensitivity at all scales to the gap fili
techniques.

V. CONCLUSION

We have examined the effects of three simple gap-fill
techniques on the estimation of long memory via two pop
lar methods, DFA and Modified Periodogram. While suppo
ing the intuitive expectations of the filling techniques on t
correlations, the accurate estimation of the long-memory
rameter is shown to be a viable prospect only if the effects
the gap-filling technique are considered. The results indic
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that long-ranged antipersistent time series are significa
less robust to gap-filling techniques than long-ranged per
tent time series. The results also indicate that for persis
time series maintaining some dependence between the
fill and the true time series limits the scale of influence of
gap-filling technique to the scale of the gaps. This study
focused on generalities: no attempt is made to address
cific situations, e.g., where missing data is not randomly d
tributed, such as whole years of missing data in a daily ti
Y.

y,

E.
v.

d-

n
0
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series. While it is obviously possible to construct more s
phisticated methods for specific situations, the analysis p
vides a succinct outline of the general expectations.

ACKNOWLEDGMENT

The work was supported by a NERC CASE award w
the Environment Agency of England and Wales.
v-

. E

ley,

s

@1# J.S. Syroka and R. Toumi, Geophys. Res. Lett.28, 3255
~2001!.

@2# E. Koscielny-Bunde, A. Bunde, S. Havlin, H.E. Roman,
Goldreich, and H.J. Schellnhuber, Phys. Rev. Lett.81, 729
~1998!.

@3# C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H. Stanle
and A. Goldberger, Phys. Rev. E49, 1685~1994!.

@4# S. Buldyrev, A.L. Goldberger, S. Havlin, R.N. Mantegna, M.
Matsa, C.K. Peng, M. Simons, and H.E. Stanley, Phys. Re
51, 5084~1995!.

@5# Y. Ashkenazy, P.C. Ivanov, S. Havlin, C.K. Peng, A.L. Gol
berger, and H.E. Stanley, Phys. Rev. Lett.86, 1900~2001!.

@6# R.T. Baillie, Econometrica73, 5 ~1996!.
@7# J. Beran,Statistics for Long-Memory Processes~Chapman and

Hall, New York, 1994!.
@8# B.D. Malamud and D.L. Turcotte,Long-Range Persistence i

Geophysical Time-Series, Advances in Geophysics Vol. 4
~Academic Press, New York, 1999!.

@9# M.S. Taqqu and V. Teverovsky,A Practical Guide to Heavy
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