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Long-memory analysis of time series with missing values
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The estimation of long memory is often restricted by missing data. We examine the effects on the estimation
of long memory of three simple gap-filling techniques: interpolation, random, and mean filling. Numerical
simulations show that the gap-filling techniques introduce significant deviations from the expected scaling
behavior for both persistent and antipersistent time series. For persistent time series the interpolation method
provides a reliable estimation of long memory for scales longer than the largest likely gap.

DOI: 10.1103/PhysRevE.68.017103 PACS nuni)er02.50—r, 05.40-a

[. INTRODUCTION nonrepeatable experiments typical in geophysics and related
fields. It is the aim of this paper to examine the effect of
The presence of long memofthe terms long-range de- several standard techniques for replacing missing data on the
pendence, long-range persistence, and long-range antiperséstimation of long memory, with the aim of establishing the
tence are also usgtas been identified in diverse fields rang- applicability of the techniques to incomplete datasets.
ing from geophysics and atmospheric phenomghd], to Several previous studies have examined the effects of
biological systemg3-5], and financial volatility[6]. Long  missing data on long-memory estimatiddl,12. These
memory is a term used to describe a time series where cohave, however, focused on estimation in state space using the

relations obey the power-law scaling relationship Kalman filter to account for the missing data. Researchers in
B the physical sciences consistently prefer a more direct, heu-
p(m)=c,|7[~ . (1) ristic approach to estimation of long memory.

Here p(7) is the autocorrelation function at lag c, is a
positive constant, andr is the long-memory parameter, Il. METHODOLOGY
where 0<a<1. The decay of correlations with is hyper-

bolic, leading to divergence of the sum, Analysis techniques to identify long memory in a time

series can be categorized according to the underlying theory,

oc random walk or spectral, and also by the detrending or non-
E p(1)=00. 2) detrending properties. Accurate estimation of long memory
T=—o with nondetrending methods requires the preprocessing of

data to remove trends. We will use the Hurst exporérno
MFefine long memory, wherd > 0.5 indicates long-range per-
sistent datald = 0.5 implies the absence of long memory, and
H<O 5 indicates long-range antipersistent data. As such, 0
<H<1 defines the limits of our study.
We examine two popular techniques, detrended fluctua-
lim p(r)/[cp|r|“’]= 1. ) tion analysis(DFA) developed by Pengt «_51!. [3] (a .random
oo walk detrending method and the modified periodogram
techniqug13] (a spectral nondetrending metho@hese are
Equation(3) is an asymptotic definition requiring a long ho- representative of the range of techniques, and reflects the
mogeneous dataset for accurate estimation of the longecommended approach to long-memory analyisid],
memory parametesr. Equations(1)—(3) apply to persistent where multiple methods are integrated to avoid potential
time series. For antipersistent time series the square of thmisdiagnosis.
autocorrelation functiorp(7)?, must be used such thatis First-order DFA gives the fluctuation functida(r), the
replaced bya+2. square root of the variance of the linearly detrended profile
A variety of techniques are available to estimate longof the time series averaged over segments of sizeich that
memory in time serieésee Bera7], Malamud and Turcotte F (7)o 7" [3]. Higher-order DFA with polynominal detrend-
[8], and Tagqqu and Teverovsk9] for reviews. The appli- ing [15] is not widely used and will not be examined here.
cation of all methods to “real world” data suffer from the The exponentH is estimated directly from a linear fit of
competing factors of data length and homogeneity. The reF(r) versusr on a logarithmic plot and is related to [Eq.
striction of long-memory analysis to only homogeneous secfl)] by H=1—a/2. Modifications to the DFA method,
tions of time serie$10] is a severe limitation particularly in  which correct for deviations from scaling at small time scales
intrinsic to the standard DFA method, have been developed
[4,15]. This study will use the modified DFA method devel-
*Corresponding author. oped by Kantelhardet al. [15].
Email address: paul.wilson@imperial.ac.uk The standard periodogram method estimates the spectral

This is in contrast to random processes where no correlatio
exist and to short-memory procesgesy., ARMA and Mar-
kov models where correlations decay exponentially with
Beran[7] defines a stationary process with long memory as a
process for which
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densityS(f) of the times series. The spectral density is sim-
ply the Fourier transform of the autocorrelation function L
p(7) [Eq.(1)]. ThusS(f) is related td by S(f)~f~#, where
B=1—«a. The modified technique accounts for the predomi-
nance of high-frequency points on a logarithmic plot by av-
eraging over logarithmically equispaced bins. The exponent
B is related toH by H=(8+1)/2.
The analysis techniques are applied to 30 independent re- Fal -
alizations of fractal Gaussian noisé8GNS9, synthetic time
series lying between classic white noise and brownian mo-
tion [16,17. FGNs are generated with specificexponents
from a Gaussian distribution with zero mean and unit vari-
ance via the method of Davies and Hafts]. A specific
percentage®, of the time series is simulated as missing by
selecting the appropriate percentage of randomly distributed
data points to remove, resulting in a geometric distribution of
gap lengthd19]. Missing data are replaced via appropriate
gap-filling techniques. This study is restricted to between 0%
and 20% missing data, representing the realistic range of L
missing data observed in real world time seriesy., UK
Meteorological Office European synoptic station precipita-
tion records available at www.badc.rl.ac)uk L
The gap-filling techniques applied are linear interpolation,
random, and mean fills as described below.
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Interpolation fill. Data are replaced by linearly interpolat- . ‘ .
ing across the data gaps. 1 10 100 1000 10000
Random fill Data are replaced with random data drawn T
from the empirical distribution of the time series, in this [, 1. Ensemble averages, normalized to the mean, of 30 in-
Mean fill. Data are replaced using the mean of the empiripanel: interpolation of missing data; middle panel: random fill of
cal distribution of the time series, in this case zero. missing data; and bottom panel: mean fill of missing data. Solid
lines—0% missing data, dotted lines—10% missing data, and
For examples of the application of these techniques, se@ashed lines—20% missing datal standard deviation error bars
Refs.[20,21]. For a discussion on more sophisticated gap-or the shortest and longest lags are included.
filling techniques, see the work of Little and Ruble2?].

behavior with no data gaps at short la@sgh frequency.
Ill. RESULTS The random fill and mean fill methods show a curvature
towards the absence of long memory while the interpolation
The results are presented as the ensemble average, NQiathod shows a curvature towards highly correlated behav-
malized to the mean, of the 30 independent realizations. I8, The variance for each gap-filling technique and percent-

all cases the results of the modified periodogram methotl age of missing data is comparable at equivalent lags. The

shown are equivalent to the DFA results shown. This hasgianqard deviation is less than 3% of the ensemble mean for
been analytically justified by Heneghan and McDafBg]

short lags and less than 17% at long lags. Figure 2 shows the
who examined the relationship between DFA and the power g ’ g1ag g

spectral density, showing that DFA and spectral measures .

provide equivalent characterizations of long-memory proper-  ,f -——-+H=0.6 g 3
ties for stationary signals. Foonen=ss e 3
2F  pH=09 -

Results for the specific cas¢=0.5, the absence of long
memory (not shown, show no deviation for the random or ¢
mean fill techniques. The interpolation technique adds short
range correlations limited to short lags o&£30 for 10%
missing data. Gap filling cannot lead to the spurious diagno-
sis of long memory if it is absent from the time series.
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A. Long-ranged persistentH>0.5 . - .
FIG. 2. Variation in the minimum lag,, for which the ensemble

Figure 1 shows results of DFA fdil = 0.7, representative mean ofF(7), of 30 FGN realizations wittP,% gaps and interpo-
of the effects of gap filling over the range &:51>1. The Iation filling, deviates from the expected scaling with no data gaps
results clearly indicate deviation from the expected scalingy less than 1 standard deviation.
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general application of DFA to time series with nonstationari-
ties, showed that the DFA signgk ) comprises the sum of
the squares df () of the individual components of the time
series, with the condition that the individual components
were uncorrelated. It was argued that the randomly located
jumps between zergmean fill methodl and nonzero seg-
ments of a time series introduces a random component to the
analysis. The results of the DFA analysis for random and
mean fill techniques are completely consistent with Chen
et al. where the gap-filling technique is simply considered a
form of nonstationarity. Cheat al. were, however, unable to
accurately distinguish the short lag features, using the stan-
i dard DFA method.
" Considering the autocorrelation function, it is possible to
present an argument for the effect of random or mean gap-
filling techniques on the autocorrelation functipfir) such
that p(7) is modified by a multiplicative factor oIPS for 7
=1 [25]. The resulting modification of the stey§0) to p(1)
can be considered a simple form of short-range dependence
with H=0.5. Qualitatively this can be considered to act in
competition with the true long memory.

No similar simple statement regarding the fluctuation
function or autocorrelation function can be made for the in-
terpolation gap-filling technique where the gap-filling is not
independent of the actual data. Hdal. [26] analytically
demonstrated that DFA on a linear trend gives a Hurst expo-
nent of 2.H=2.0 should thus represent the asymptotic limits
of the observed deviations. For correlated data the interpola-

FIG. 3. Ensemble averages, normalized to the mean, of 30 intion fill shows deviations towards this asymptotic limit but
dependent FGN simulations with 8192 data pointslr€0.3. Top  only at scales shorter than or similar to the expected maxi-
panel: interpolation of missing data; middle panel: random fill of mum gap length: 6 and 4 for 20% and 10% gaps, respec-
missing data; bottom panel: mean fill of missing data. Solid Iines:tive|y (calculated from the expected maximum of a geomet-
0% missing data; dotted lines: 10% missing data; dashed lines: 20%c distribution with known series length using the theory of
missing data*1 §tandard deviation errors bars for the shortest anqarge number§27]). At longer scales the dependence of the
longest lags are included. interpolation fill on the actual time series maintains the true

long memory properties. For antipersistent signals there is
minimum lag for which there is no deviation from true scal- evidence that at short lags the deviation is tending to the

<F(1)>/11/2
T

1 10 100 1000 10000
T

ing with the interpolation fill. expected asymptotic limit; however, at larger scales the in-
terpolation destroys the correlation structure in a similar
B. Long-ranged antipersistentH <0.5 manner to the random or mean fills.

The significant feature of the results for the estimation of

The results for the long-range antipersistent céase | i “real d” data is th le of infl f
<0.5, Fig. 3, show deviation from the expected scaling be:0Ng MeMory in “real wor ata is the scale of influence o

havior with no data gaps at all lags. The magnitude of théhe gap filling techniques. qu persis_tent data the low fre-
deviation is greater at long lagtow frequency than at short dUeNcy components of the time series 100, which are

lags(high frequency. The deviations towards the absence Ofprl_nc:lpally ‘.“a”'feS‘ as chal t.rends, are robust to the gap
long memory are significantly greater than those for Iong_f|II|ng techniques. For antipersistent data the mean reversion
operty intrinsic to the time series inhibits drift from the

ranged persistent time series, consistent with the conclusiof! S . S
of Chenet al. [24] that antipersistent signals are less robustN€an resulting in sensitivity at all scales to the gap filing
to the effects of nonstationarities compared to persistent siégchnlques.

nals. The potential for underestimating the strength of long

memory for antipersistent time series with missing data is V. CONCLUSION

significantly greater than for persistent time series. ] ] o
We have examined the effects of three simple gap-filling

techniques on the estimation of long memory via two popu-
lar methods, DFA and Modified Periodogram. While support-
The results are consistent with intuitive expectations.ing the intuitive expectations of the filling techniques on the
Random and mean fills destroy correlations between dateorrelations, the accurate estimation of the long-memory pa-
points such that the deviations from the true scaling tendameter is shown to be a viable prospect only if the effects of
asymptotically toH=0.5. Chenet al. [24], in studying the the gap-filling technique are considered. The results indicate

IV. DISCUSSION
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that long-ranged antipersistent time series are significantlgeries. While it is obviously possible to construct more so-
less robust to gap-filling techniques than long-ranged persighisticated methods for specific situations, the analysis pro-
tent time series. The results also indicate that for persistentides a succinct outline of the general expectations.

time series maintaining some dependence between the data

fill and the true time series limits the scale of influence of the

gap-filling technique to the scale of the gaps. This study has ACKNOWLEDGMENT

focused on generalities: no attempt is made to address spe-

cific situations, e.g., where missing data is not randomly dis- The work was supported by a NERC CASE award with

tributed, such as whole years of missing data in a daily timehe Environment Agency of England and Wales.

[1] J.S. Syroka and R. Toumi, Geophys. Res. L&8, 3255 [13] M.S. Taqqu, V. Teverosky, and W. Willinger, Fract@ls785
(20021. (1995.

[2] E. Koscielny-Bunde, A. Bunde, S. Havlin, H.E. Roman, Y. [14] G. Rangarajan and M. Ding, Phys. Rev6E, 4991 (2000.
Goldreich, and H.J. Schellnhuber, Phys. Rev. L8it, 729 [15] J.W. Kantelhardt, E. Koscielny-Bunde, H.H.A. Rego, S. Hav-

(1998. lin, and A. Bunde, Physica 295 441 (200J.
[3] C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H. Stanley, [16] B.B. Mandelbrot and J.W.V. Ness, SIAM Re)0, 422 (1968.
and A. Goldberger, Phys. Rev. 49, 1685(1994). [17] B.B. Mandelbrot and J.R. Wallis, Water Resour. R&s228

[4] S. Buldyrev, A.L. Goldberger, S. Havlin, R.N. Mantegna, M.E. (1969.
Matsa, C.K. Peng, M. Simons, and H.E. Stanley, Phys. Rev. 18] R.B. Davies and D.S. Harte, Biometrika, 95 (1987).

51, 5084(1995. [19] M. Evans, N. Hastings, and B. Peaco&atistical Distribu-
[5] Y. Ashkenazy, P.C. Ivanov, S. Havlin, C.K. Peng, A.L. Gold- tions (Wiley, New York, 2000.
berger, and H.E. Stanley, Phys. Rev. L&&, 1900(200). [20] P. Talkner and R.O. Weber, Phys. Rev6E 150 (2000.
[6] R.T. Baillie, Econometric&3, 5 (1996. [21] A.R. Rao and D. Bhattacharya, J. Hydrall6, 183 (1999.
[7] J. Beran Statistics for Long-Memory Processghapman and [22] R.J.A. Little and D.B. RubenStatistical Anylsis with Missing
Hall, New York, 1994. Data (Wiley, New York, 1987.

[8] B.D. Malamud and D.L. Turcottd,ong-Range Persistence in [23] C. Heneghan and G. McDarby, Phys. Re\6E 6103(2000.
Geophysical Time-SerieAdvances in Geophysics Vol. 40 [24] Z. Chen, P.C. Ivanov, K. Hu, and H.E. Stanley, Phys. Rev. E

(Academic Press, New York, 1999 65, 041107(2002.
[9] M.S. Taqqu and V. Teverovsky Practical Guide to Heavy [25] R. Chandler(private communication

Tails (Birkhauser, Boston, 1998 Chap. 8, pp. 177-218. [26] K. Hu, P.C. Ivanov, Z. Chen, P. Carpena, and H.E. Stanley,
[10] A. Tsonis, P. Roebber, and J. Elsner, J. Clir#, 1534(1999. Phys. Rev. B54, 011114(2002.
[11] W. Palma and N.H. Chan, J. Forecastitfy) 395 (1997). [27] D. Sornette, Critical Phenomena in the Natural Sciences
[12] W. Palma and G.D. Pino, Biometrikas, 965 (1999. (Springer, Berlin, 2000

017103-4



